Problems with Matlab Projects? You may face many Problems, but do not worry we are ready to solve your Problems. All you need to do is just leave your Comments. We will assure you that you will find a solution to your project along with future tips. On Request we will Mail you Matlab Codes for Registered Members of this site only, at free service...Follow Me.

MATLAB Calculations for Decision Models

Summary: Additional examples of Matlab calculations for decision problems (see Matlab Procedures for Markov Decision Processes).







Data

There are three types.  In all types, we need the following:
A=thevectorofactions(1×m)m=thenumberofactions
PH:PH(i)=P(H=ui)(1×s)s=thenumberofvaluesofH
PXH:PXH(i,j)=P(X=xj|H=ui)(s×q)q=thenumberofvaluesofX
  • Type 1:  The usual type.  In addition to the above, we need      
    L=[L(a,yk)](m×n)m=thenumberofactions
    PYH:PYH(i,k)]=P(Y=yk|H=ui)(s×n)n=thenumberofvaluesofY
  • Type 2:  The matrix RH=[r(a,i)] is given.  L and PYH are not needed.
  • Type 3:  Sometimes Y=H.  In this case RH=L, which we need, in addition to the above.

Calculated quantities

  1. RH=[r(a,i)](m×s)      [Risk function = expected loss, given H]                r(a,i)=E[L(a,Y)|H=ui]=L(a,k)P(Y=yk|H=ui) MATLAB:  RH = L*PYH'
  2. PX(1×q)                PX(j)=P(X=xj)=P(H=ui)P(X=j|H=ui) MATLAB:  PX = PH*PXH
  3. PHX(q×s)                PHX(i,)=P(H=uj|X=xi)=P(X=xi|H=ui)P(H=uj)/P(X=Xi) MATLAB: [a,b] = meshgrid(PH,PX)      PHX = PXH'.*a./b
  4. RX=[R(a,j)](m×q)       [Expected risk, given X]                R(a,j)=E[r(a,H)|X=xj]=r(a,i)P(H=ui|X=xj) MATLAB:  RX = RH*PHX'
  5. Select d* from RX:  d*(j) is the action a (row number) for minimum expected loss, given X=j. Set D=[d*(1),d*(2),d*(q)].
  6. Calculate the Bayesian risk BD for d*.                BD=E[R(d*(X),X)]=RX(D(j),j)PX(j) MATLAB:  RD*PX'

NOTE: 

Actions are represented in calculations by action number (position in the matrix). In some cases, each action has a value other than its position number. The actual values can be presented in the final display.

file dec.m

% file dec.m
% Version of 12/12/95
disp('Decision process with experimentation')
disp('There are three types, according to the data provided.')
disp('In all types, we need the row vector A of actions,')
disp('the row vector PH with PH(i) = P(H = u_i),')
disp('the row vector X of test random variable values, and')
disp('the matrix PXH with PXH(i,j) = P(X = x_j|H = u_i).')
disp('Type 1.  Loss matrix L of L(a,k)')
disp('         Matrix PYH with PYH(i,k) = P(Y = y_k|H = u_i)')
disp('Type 2.  Matrix RH of r(a,i) = E[L(a,Y)|H = u_i].')
disp('         L and PYH are not needed for this type.')
disp('Type 3.  Y = H, so that only RH = L is needed.')
c   = input('Enter type number  ');
A   = input('Enter vector A of actions ');
PH  = input('Enter vector PH of parameter probabilities  ');
PXH = input('Enter matrix PXH of conditional probabilities  ');
X   = input('Enter vector X of test random variable values  ');
s = length(PH);
q = length(X);
if c == 1
 L   = input('Enter loss matrix L  ');
 PYH = input('Enter matrix PYH of conditional probabilities  ');
 RH  = L*PYH';
elseif c == 2
 RH  = input('Enter matrix RH of expected loss, given H  ');
else
 L   = input('Enter loss matrix L  ');
 RH  = L;
end
PX   = PH*PXH;        % (1 x s)(s x q) = (1 x q)
[a,b] = meshgrid(PH,PX);
PHX = PXH'.*a./b;     % (q x s)
RX  = RH*PHX';        % (m x s)(s x q) = (m x q)
[RD D] = min(RX);     % determines min of each col
                      % and row on which min occurs
S = [X; A(D); RD]';
BD = RD*PX';          % Bayesian risk
h  = ['  Optimum losses and actions'];
sh = ['  Test value  Action     Loss'];
disp(' ')
disp(h)
disp(sh)
disp(S)
disp(' ')
disp(['Bayesian risk  B(d*) = ',num2str(BD),])

EXAMPLE 1: General case

% file dec1.m
% Data for Problem 22-11
type = 1;
A = [10 15];          % Artificial actions list
PH = [0.3 0.2 0.5];   % PH(i) = P(H = i)
PXH = [0.7 0.2 0.1;   % PXH(i,j) = P(X = j|H= i)
      0.2 0.6 0.2;
      0.1 0.1 0.8];
X = [-1 0  1];
L = [1  0 -2;         % L(a,k) = loss when action number is a, outcome is k
    3 -1 -4];
PYH = [0.5 0.3 0.2;   % PYH(i,k) = P(Y = k|H = i)
      0.2 0.5 0.3;
      0.1 0.3 0.6];
 
dec1
dec
Decision process with experimentation
There are three types, according to the data provided.
In all types, we need the row vector A of actions,
the row vector PH with PH(i) = P(H = i),
the row vector X of test random variable values, and
the matrix PXH with PXH(i,j) = P(X = j|H = i).
Type 1.  Loss matrix L of L(a,k)
        Matrix PYH with PYH(i,k) = P(Y = k|H = i)
Type 2.  Matrix RH of r(a,i) = E[L(a,Y)|H = i].
        L and PYH are not needed in this case.
Type 3.  Y = H, so that only RH = L is needed.
Enter type number  type
Enter vector A of actions A
Enter vector PH of parameter probabilities  PH
Enter matrix PXH of conditional probabilities  PXH
Enter vector X of test random variable values  X
Enter loss matrix L  L
Enter matrix PYH of conditional probabilities  PYH
 
 Optimum losses and actions
 Test value  Action     Loss
  -1.0000   15.0000   -0.2667
        0   15.0000   -0.9913
   1.0000   15.0000   -2.1106
 
Bayesian risk  B(d*) = -1.3
Intermediate steps in solution of Example 1, to show results of various operations
RH
RH  =  0.1000   -0.4000   -1.1000
      0.4000   -1.1000   -2.4000
PX
PX  =  0.3000    0.2300    0.4700
a
a   =  0.3000    0.2000    0.5000
      0.3000    0.2000    0.5000
      0.3000    0.2000    0.5000
b
b   =  0.3000    0.3000    0.3000
      0.2300    0.2300    0.2300
      0.4700    0.4700    0.4700
PHX
PHX =  0.7000    0.1333    0.1667
      0.2609    0.5217    0.2174
      0.0638    0.0851    0.8511
RX
RX  = -0.1667   -0.4217   -0.9638
     -0.2667   -0.9913   -2.1106

EXAMPLE 2: RH given

% file dec2.m  
% Data for type in which RH is given
type = 2;
A = [1 2];
X = [-1 1 3];
PH = [0.2 0.5 0.3];
PXH = [0.5 0.4 0.1;   % PXH(i,j) = P(X = j|H = i)
      0.4 0.5 0.1;
      0.2 0.4 0.4];
RH = [-10   5 -12;
       5 -10  -5];    % r(a,i) = expected loss when
                      %   action is a, given H = i
 
dec2
dec
Decision process with experimentation
------------------- Instruction lines edited out
Enter type number  type
Enter vector A of actions A
Enter vector PH of parameter probabilities  PH
Enter matrix PXH of conditional probabilities  PXH
Enter vector X of test random variable values  X
Enter matrix RH of expected loss, given H  RH
 
 Optimum losses and actions
 Test value  Action     Loss
  -1.0000    2.0000   -5.0000
   1.0000    2.0000   -6.0000
   3.0000    1.0000   -7.3158
 
Bayesian risk  B(d*) = -5.89

EXAMPLE 3: Example 3

Carnival example (type in which Y=H)
A carnival is scheduled to appear on a given date.  Profits to be earned depend heavily on the weather.  If rainy, the carnival loses $15 (thousands); if cloudy, the loss is $5 (thousands); if sunny, a profit of $10 (thousands) is expected.  If the carnival sets up its equipment, it must give the show;  if it decides not to set up, it forfeits $1,000.  For an additional cost of $1,000, it can delay setup until the day before the show and get the latest weather report.
      Actual weather H=Y is 1 rainy, 2 cloudy, or 3 sunny.
The weather report X has values 1, 2, or 3, corresponding to predictions rainy, cloudy, or sunny respectively.
      Reliability of the forecast is expressed in terms of P(X=j|H=i)– see matrix PXH
      Two actions: 1 set up;  2 no set up.
      Possible losses for each action and weather condition are in matrix L.
% file dec3,m
% Carnival problem
type = 3;             % Y = H  (actual weather)
A = [1  2];           % 1: setup  2: no setup
X = [1  2  3];        % 1; rain,  2: cloudy, 3: sunny
L = [16 6 -9;         % L(a,k) = loss when action number is a, outcome is k
     2 2  2];         % --with premium for postponing setup
PH = 0.1*[1 3 6];     % P(H = i)
PXH = 0.1*[7 2 1;     % PXH(i,j) = P(X = j|H = i)
          2 6 2;
          1 2 7];
 
dec3
dec
Decision process with experimentation
------------------- Instruction lines edited out
Enter case number  case
Enter vector A of actions A
Enter vector PH of parameter probabilities  PH
Enter matrix PXH of conditional probabilities  PXH
Enter vector X of test random variable values  X
Enter loss matrix L  L
 
 Optimum losses and actions
 Test value  Action     Loss
   1.0000    2.0000    2.0000
   2.0000    1.0000    1.0000
   3.0000    1.0000   -6.6531
 
Bayesian risk  B(d*) = -2.56

0 comments:

Post a Comment

Recent Comments

Popular Matlab Topics

Share your knowledge - help others

Crazy over Matlab Projects ? - Join Now - Follow Me

Sites U Missed to Visit ?

Related Posts Plugin for WordPress, Blogger...

Latest Articles

Special Search For Matlab Projects

MATLAB PROJECTS

counter

Bharadwaj. Powered by Blogger.