Problems with Matlab Projects? You may face many Problems, but do not worry we are ready to solve your Problems. All you need to do is just leave your Comments. We will assure you that you will find a solution to your project along with future tips. On Request we will Mail you Matlab Codes for Registered Members of this site only, at free service...Follow Me.

FisherFaces for Face Recognition


We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space—if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher’s Linear Discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The Eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed “Fisherface” method has error rates that are lower than those of the Eigenface technique for tests on the Harvard and Yale Face Databases.





When benchmarking an algorithm it is recommendable to use a standard test data set for researchers to be able to directly compare the results. While there are many databases in use currently, the choice of an appropriate database to be used should be made based on the task given (aging, expressions, lighting etc). Another way is to choose the data set specific to the property to be tested (e.g. how algorithm behaves when given images with lighting changes or images with different facial expressions).




Index Terms: face, database, databases, download, list. 

 




Figure 1. Face database


A complete list of public face databases available on the web.


Index terms: appearance-based vision, face recognition, illumination invariance, Fisher’s linear discriminant, face recognition, face matching, face identification, PCA, principal components analysis, fisherfaces.
 




Figure 1. Eigenfaces of faces from the ORL face database.


A simple and effective source code for Face Recognition Based on FisherFaces. All tests were performed on AT&T database.

0 comments:

Post a Comment

Recent Comments

Popular Matlab Topics

Share your knowledge - help others

Crazy over Matlab Projects ? - Join Now - Follow Me

Sites U Missed to Visit ?

Related Posts Plugin for WordPress, Blogger...

Latest Articles

Special Search For Matlab Projects

MATLAB PROJECTS

counter

Bharadwaj. Powered by Blogger.