DISCRETE-TIME SIGNALS IN THE FREQUENCY DOMAIN
Program can be used to evaluate and plot the DTFT of the form of above equation
% Program
% Evaluation of the DTFT
clf;
% Compute the frequency samples of the DTFT
w = -4*pi:8*pi/511:4*pi;
num = [2 1];den = [1 -0.6];
h = freqz(num, den, w);
% Plot the DTFT
subplot(2,1,1)
plot(w/pi,real(h));grid
title(’Real part of H(e^{j\omega})’)
xlabel(’\omega /\pi’);
ylabel(’Amplitude’);
subplot(2,1,2)
plot(w/pi,imag(h));grid
title(’Imaginary part of H(e^{j\omega})’)
xlabel(’\omega /\pi’);
ylabel(’Amplitude’);
pause
subplot(2,1,1)
plot(w/pi,abs(h));grid
title(’Magnitude Spectrum |H(e^{j\omega})|’)
xlabel(’\omega /\pi’);
ylabel(’Amplitude’);
subplot(2,1,2)
plot(w/pi,angle(h));grid
title(’Phase Spectrum arg[H(e^{j\omega})]’)
xlabel(’\omega /\pi’);
ylabel(’Phase, radians’);
Program can be used to verify the convolution property of the DTFT
% Program
% Convolution Property of DTFT
clf;
w = -pi:2*pi/255:pi;
x1 = [1 3 5 7 9 11 13 15 17];
x2 = [1 -2 3 -2 1];
y = conv(x1,x2);
h1 = freqz(x1, 1, w);
h2 = freqz(x2, 1, w);
hp = h1.*h2;
h3 = freqz(y,1,w);
subplot(2,2,1)
plot(w/pi,abs(hp));grid
title(’Product of Magnitude Spectra’)
subplot(2,2,2)
plot(w/pi,abs(h3));grid
title(’Magnitude Spectrum of Convolved Sequence’)
subplot(2,2,3)
plot(w/pi,angle(hp));grid
title(’Sum of Phase Spectra’)
subplot(2,2,4)
plot(w/pi,angle(h3));grid
title(’Phase Spectrum of Convolved Sequence’)
0 comments:
Post a Comment