Problems with Matlab Projects? You may face many Problems, but do not worry we are ready to solve your Problems. All you need to do is just leave your Comments. We will assure you that you will find a solution to your project along with future tips. On Request we will Mail you Matlab Codes for Registered Members of this site only, at free service...Follow Me.

Bilinear Forms for Linear Convolution


Bilinear Forms for Linear Convolution

The following is a collection of bilinear forms for linear convolution. In each case (Dn,Dn,Fn) describes a bilinear form for n point linear convolution. That is
y=Fn{Dn,h,*,Dn,x}(1)
computes the linear convolution of the n point sequences h and x.
For each Dn we give Matlab programs that compute Dnx and Dntx, and for each Fn we give a Matlab program that computes Fntx. When the matrix exchange algorithm is employed in the design of circular convolution algorithms, these are the relevant operations.

2 point linear convolution

D2 can be implemented with 1 addition, D2t with two additions.
D2=[
10
01
11
](2)
F2=[
100
-1-11
010
](3)
 function y = D2(x) y = zeros(3,1); y(1) = x(1); y(2) = x(2); y(3) = x(1) + x(2); 
 function y = D2t(x) y = zeros(2,1); y(1) = x(1)+x(3); y(2) = x(2)+x(3); 
 function y = F2t(x) y = zeros(3,1); y(1) = x(1)-x(2); y(2) = -x(2)+x(3); y(3) = x(2); 

3 point linear convolution

D3 can be implemented in 7 additions, D3t in 9 additions.
D3=[
100
111
1-11
124
001
](4)
F3=
1
6
[
60000
-36-2-112
-6330-6
3-3-11-12
00006
]
(5)
 function y = D3(x) y = zeros(5,1); a = x(2)+x(3); b = x(3)-x(2); y(1) = x(1); y(2) = x(1)+a; y(3) = x(1)+b; y(4) = a+a+b+y(2); y(5) = x(3); 
 function y = D3t(x) y = zeros(3,1); y(1) = x(2)+x(3)+x(4); a = x(4)+x(4); y(2) = x(2)-x(3)+a; y(3) = y(1)+x(4)+a; y(1) = y(1)+x(1); y(3) = y(3)+x(5); 
 function y = F3t(x) y = zeros(5,1); y(1) = 6*x(1)-3*x(2)-6*x(3)+3*x(4); y(2) = 6*x(2)+3*x(3)-3*x(4); y(3) = -2*x(2)+3*x(3)-x(4); y(4) = -x(2)+x(4); y(5) = 12*x(2)-6*x(3)-12*x(4)+6*x(5); y = y/6; 

4 point linear convolution

D4=D2D2(6)
F4=[
100000000
-1-11000000
-110-100100
11-111-1-1-11
0-101-10010
000-1-11000
000010000
](7)
 function y = F4t(x) y = zeros(7,1); y(1) = x(1)-x(2)-x(3)+x(4); y(2) = -x(2)+x(3)+x(4)-x(5); y(3) = x(2)-x(4); y(4) = -x(3)+x(4)+x(5)-x(6); y(5) = x(4)-x(5)-x(6)+x(7); y(6) = -x(4)+x(6); y(7) = x(3)-x(4); y(8) = -x(4)+x(5); y(9) = x(4); 

6 point linear convolution

D6=D2D3(8)
F6=
1
6
[
600000000000000
-36-2-1120000000000
-6330-60000000000
-3-3-11-12-6000060000
3-621-63-621-12-36-2-112
6-3-3066-3-306-6330-6
-331-112331-1123-3-11-12
0000-6-36-2-1600006
00000-6330-600000
000003-3-11-1200000
000000000600000
]
(9)
          function y = F6t(x) y = zeros(15,1); y(1) = 6*x(1)-3*x(2)-6*x(3)-3*x(4)+3*x(5)+6*x(6)-3*x(7); y(2) = 6*x(2)+3*x(3)-3*x(4)-6*x(5)-3*x(6)+3*x(7); y(3) = -2*x(2)+3*x(3)-x(4)+2*x(5)-3*x(6)+x(7); y(4) = -x(2)+x(4)+x(5)-x(7); y(5) = 12*x(2)-6*x(3)-12*x(4)-6*x(5)+6*x(6)+12*x(7)-6*x(8); y(6) = -6*x(4)+3*x(5)+6*x(6)+3*x(7)-3*x(8)-6*x(9)+3*x(10); y(7) = -6*x(5)-3*x(6)+3*x(7)+6*x(8)+3*x(9)-3*x(10); y(8) = 2*x(5)-3*x(6)+x(7)-2*x(8)+3*x(9)-x(10); y(9) = x(5)-x(7)-x(8)+x(10); y(10) = -12*x(5)+6*x(6)+12*x(7)+6*x(8)-6*x(9)-12*x(10)+6*x(11); y(11) = 6*x(4)-3*x(5)-6*x(6)+3*x(7); y(12) = 6*x(5)+3*x(6)-3*x(7); y(13) = -2*x(5)+3*x(6)-x(7); y(14) = -x(5)+x(7); y(15) = 12*x(5)-6*x(6)-12*x(7)+6*x(8); y = y/6; 

8 point linear convolution

D8=D2D2D2(10)
F8=[
100000000000000000000000000
-1-11000000000000000000000000
-110-100100000000000000000000
11-111-1-1-11000000000000000000
-1-101-10010-100000000100000000
11-1-1-1100011-1000000-1-11000000
1-10110-1001-10100-100-110-100100
-1-11-1-1111-1-1-11-1-1111-111-111-1-1-11
010-1100-10110-1100-100-101-10010
00011-1000-1-1111-1000000-1-11000
0000-10000-110-1-10100000010000
00000000011-111-1-1-11000000000
0000000000-101-10010000000000
000000000000-1-11000000000000
000000000000010000000000000
](11)
 function y = F8t(x) y = zeros(27,1); y(1) = x(1)-x(2)-x(3)+x(4)-x(5)+x(6)+x(7)-x(8); y(2) = -x(2)+x(3)+x(4)-x(5)+x(6)-x(7)-x(8)+x(9); y(3) = x(2)-x(4)-x(6)+x(8); y(4) = -x(3)+x(4)+x(5)-x(6)+x(7)-x(8)-x(9)+x(10); y(5) = x(4)-x(5)-x(6)+x(7)-x(8)+x(9)+x(10)-x(11); y(6) = -x(4)+x(6)+x(8)-x(10); y(7) = x(3)-x(4)-x(7)+x(8); y(8) = -x(4)+x(5)+x(8)-x(9); y(9) = x(4)-x(8); y(10) = -x(5)+x(6)+x(7)-x(8)+x(9)-x(10)-x(11)+x(12); y(11) = x(6)-x(7)-x(8)+x(9)-x(10)+x(11)+x(12)-x(13); y(12) = -x(6)+x(8)+x(10)-x(12); y(13) = x(7)-x(8)-x(9)+x(10)-x(11)+x(12)+x(13)-x(14); y(14) = -x(8)+x(9)+x(10)-x(11)+x(12)-x(13)-x(14)+x(15); y(15) = x(8)-x(10)-x(12)+x(14); y(16) = -x(7)+x(8)+x(11)-x(12); y(17) = x(8)-x(9)-x(12)+x(13); y(18) = -x(8)+x(12); y(19) = x(5)-x(6)-x(7)+x(8); y(20) = -x(6)+x(7)+x(8)-x(9); y(21) = x(6)-x(8); y(22) = -x(7)+x(8)+x(9)-x(10); y(23) = x(8)-x(9)-x(10)+x(11); y(24) = -x(8)+x(10); y(25) = x(7)-x(8); y(26) = -x(8)+x(9); y(27) = x(8); 

18 point linear convolution

D8=D2D3D3(12)
F18 and the program F18t are too big to print.

0 comments:

Post a Comment

Recent Comments

Popular Matlab Topics

Share your knowledge - help others

Crazy over Matlab Projects ? - Join Now - Follow Me

Sites U Missed to Visit ?

Related Posts Plugin for WordPress, Blogger...

Latest Articles

Special Search For Matlab Projects

MATLAB PROJECTS

counter

Bharadwaj. Powered by Blogger.